

Ground System Planning for Long Duration Space Missions
Helped by Lessons Learned Resurrecting Obsolete Computers

(Corrected version reprinted by S.E. Gemeny July 2011)

 Steven E. Gemeny Michael W. Gemeny

 Johns Hopkins University Office of Information Technology
 Applied Physics Laboratory Prince Georges County Schools
 Laurel, MD 20723 Largo, MD

 Steve.Gemeny@jhuapl.edu mgemeny@pgcps.org
 (steve@gemeny.com)

Copyright 2003 The Johns Hopkins University Applied Physics Laboratory. All Rights Reserved.

Abstract

Multi-decade space missions face a new challenge—
planning to keep the ground system operational for decades.
While early planning for such items as the availability of
spare components, accurately documenting the “as-built”
configuration of the system, and transition planning for key
individuals with unique knowledge are vital to longevity
planning, eventually some aspect of the system will no
longer be functional. Resurrecting a decade old system in
hardware, or as a software simulation, may well become the
only methods of assuring ground system functionality.

With few resources available on lessons learned in the
resurrection of decade-old technology specifically to
support ongoing mission operations, alternative sources for
lessons were discovered in an unlikely arenathe online
world of “Retro-Computing”.

Introduction

This paper chronicles the results, pitfalls and lessons
learned from the successful resurrection of two computing
systems from the 1970s. By studying the significance of
fortuitous circumstances related to these two systems today,
designers may better understand and prepare for the future
needs of ground systems to be used by long duration space
missions. The unavailability of any substantive information
specific to spacecraft ground systems longevity planning
amplifies the relevance of this work.

A Tale of Two Processors

One of the systems chronicled in this paper, based on the
first microprocessor used in a satellite command system, is
brought back to full functionality in a hardware
implementation using 25-year-old components. Recovering
functional software along with the necessary documentation
and software development tools, then translating 25-year-
old data storage media into formats compatible with
present-day systems all proved to be significant challenges.
The use of the Internet and a distributed collaboration of
geographically distant individuals sharing talent and

expertise contributed to the success of the effort in many
areas.

The other system, a multi rack “mini-computer” having
only one known instance of complete physical hardware
still in existence, is virtually resurrected as a fully
functional, multi-platform software simulation. The
fortuitous archiving of source code for the operating
system, generation of system backup tapes, and the
necessity to reverse engineer the actual functioning of
obscure components of software and hardware that were
never properly documented proved nontrivial to the effort.
Recovering key software from both paper tape and
magnetic tape in formats that are archaic by today’s
standards turned out to be crucial to the success of the
project. The accomplishment of this endeavor in the
absence of access to operational hardware is owed primarily
to the quantity and quality of documentation and archival
data that had been preserved.

The COSMAC ELF

In the early days of satellite guidance, command, and
control, discrete component logic was the standard method
used by the designers. This method, while effective and
robust, became far too rigid and limiting as the complexity
of spacecraft increased. Advances in microprocessor
technology through the Seventies made it only a matter of
time before microprocessors would replace the discrete
logic designs. The challenge for designers was that of
power availability for the operation of these emerging
systems.

All this changed in the spring of 1976 with the introduction
of the CDP-1802 by RCA1. The 1802 was constructed
using CMOS technology, which required significantly
lower power than any other microprocessor of the era and
was inherently robust against the effects of radiation when
fabricated using silicon-on-sapphire (SOS) techniques.

The Space Department of the Johns Hopkins Applied
Physics Laboratory began an evaluation of the 1802 for

Ground System Planning for Long Duration Space Missions
Helped by Lessons Learned Resurrecting Obsolete Computers

Copyright 2003 The Johns Hopkins University Applied Physics Laboratory. All Rights Reserved.

spacecraft use shortly after the introduction. In less than a
year the analysis was complete and the decision was made
to use the 1802 as the command processor for a U.S.
Geological Survey spacecraft, MAGSAT, being designed
under a NASA contract.2 The trend continued with other
spacecraft design, the most notable being GALILEO, which
included 17 CDP-1802 microprocessors.

The architecture developed by RCA for the 1802 continued
using the acronym COSMAC, following the design for the
2-chip 1801 introduced a year earlier. The COSMAC
architecture was supported by RCA with a full line of
development environments, high-level software, and
myriad CMOS peripheral components. One interesting
system available from RCA to promote the 1802 was
referred to as the Micro Tutor. This simple little trainer
featured 256 bytes of memory, eight toggle switches for
input and a pair of hexadecimal displays for output. It was
enough to give designers a taste of how simple a machine
the 1802 could be. So simple indeed that the 1802 based
Micro Tutor spawned a series of construction articles in
magazines such as Popular Electronics Magazine
promoting the idea of a build-it-yourself computer for under
$803. Thus was born the COSMAC ELF, a simple wire
wrap computer trainer that in retrospect appears to have
been an introduction to microprocessors for thousands of
young engineers—this author included.

The hobby computer industry blossomed in the Seventies as
various companies began introducing low cost trainers and
software for nearly every processor available; the 1802 was
no exception. Software was available in various formats for
text editors, assemblers, and even higher-level languages
such as BASIC and FORTH could be found, but by 1983
with the introduction of the IBM-PC it all faded into
obscurity.

In early 2002, 25 years after the introduction of the 1802,
impelled by a wave of nostalgia I began an effort to recover
my own 1802-based systems from obscurity.

The first challenge, that of unearthing the construction
article, was quickly overcome. I was able to locate my
original copy of the construction article, safely tucked away
in a box in the basement along with an enhanced 1802-
based product from 1978, the Super ELF. Apparently I had
boxed it all up to make room for my first PC, thinking that
one day it might be fun to show people the way things used
to be. Fortunately I had included a complete archive of
documentation and program data on cassette tape.

A little bit of scrounging in the “junk box” revealed a full
complement of chips needed for the project, pilled [piled?
filled?] with sawdust, but still in the crumbling antistatic
foam (who said CMOS chips are fragile?)!

Parts and schematics in hand, the wire wrapping went
quickly and the hex display came to life under switch
control without event after about 6 hours.

The next step was to fire up the much more capable Super
ELF which was equipped with cassette I/O and a whopping
4K of RAM to recover the software from the tapes.
Unfortunately, the Super ELF did not function. Careful
review of the operating manual and some troubleshooting
lead to the discovery of significant corrosion on the
memory board. The effort to repair the tracks, some
completely corroded away, was substantial. I cannot
imagine why the manufacturer originally reasoned to
include a full-sized copy of the blank circuit card
documenting the track patterns as part of the manual4, but I
do know that without this piece of documentation the Super
ELF would not have been recoverable and subsequent steps
would have been doomed.

With the Super ELF running again I began the process of
recovering the software archive from several cassette tapes.
The Super ELF was also configured with two pieces of
software on EPROMS, a monitor program (1K) that
functioned like a rudimentary operating system, and a Tiny
BASIC (2K) interpreter. The monitor program included the
ability to record program memory onto (and play back
from) audiocassette tapes in a format very similar to a
popular “Kansas City Standard” of the era. The first
attempts to read any of the archived tapes revealed a very
daunting problem—the quality of the magnetic recording
had degraded to a point that the software was unable to read
the data without significant errors.

Degradations in magnetic recording media can occur for a
number of reasons. The most significant cause in this case
was as a result of a process known to the audio recording
world as “print through”. The recorded bits from one part
of the tape, lying over top of the wrap before it, had caused
the oxide to magnetically imprint a ghost image. This ghost
signal on the tape had the effect of “smudging” the intended
bit making it less likely to be properly detected by the
hardware/software involved in reading the data. Without
some form of significant filtering and thresholding of the
audio, the 25 year-old data would be lost.

It is at this point in my story that I encountered a users
group of similar-minded folks online who were all sharing
their stories of the 1802 and how it affected their careers5.
Several of them were having similar problems with
recovering data from 1802-based systems around the world.
One had even been attempting to load a full ANSI standard
version of BASIC (Super BASIC, requiring 12K of RAM)
from cassette and in frustration had recorded it as a .WAV
file for others to attempt recovering. I joined the effort and
soon the distributed collective of 1802 users had located
news letters from the late ’70s describing the data storage

Ground System Planning for Long Duration Space Missions
Helped by Lessons Learned Resurrecting Obsolete Computers

Copyright 2003 The Johns Hopkins University Applied Physics Laboratory. All Rights Reserved.

formats used by various 1802-based products6. Another
member of the group was able to produce a Windows
application based on the documentation that could read and
write .WAV files compatible with the various 1802-based
systems7. By adjusting the filtering on this “ELF Tool”
even the most damaged tapes were eventually recovered,
error free.

A full ANSI BASIC for the 25-year-old 1802 was within
reach, but still not finished. The program could be loaded
into one participant’s hardware, but without the original
documentation and no one in the group having clear
recollections of the startup procedure, it was still unusable.
Another member of the Super BASIC team was finishing
up an 1802 emulator running under Windows. Super
BASIC was loaded into the emulation, which permitted
extensive “code sleuthing” to uncover the startup procedure
from the software perspective. Still, the behavior of the
software appeared odd and did not seem to yield a solution.
The final set of clues came from a copy of the original
brochure on Super BASIC, which included details of
memory allocation structure, a command summary, a
description of the capabilities including both serial and
parallel I/O routines, and most encouragingly, the name of
author of the code.

One team member, living in Uruguay, was able to locate an
address and telephone number for this author of the code.
The international call was quite a shock for the author, but
not as much of a shock as the realization that people were
still interested in his 25-year-old “first paid effort”.
Unfortunately, nothing had been saved from the
development, and the author had little memory of the
code’s functioning. Code sleuthing would have to do.

With more clues in hand, the emulation analysis of Super
BASIC at startup revealed some memory setup, and reading
a one-bit input flag as part of a several-second loop. The
condition of this flag determined the destination of a
subsequent branch, into either serial or parallel I/O memory
area. It was necessary to hold down the “input” key at
startup to tell Super BASIC to use serial I/O, otherwise it
launched into parallel I/O, which generated no output in the
simulation or in the hardware implementation. Applying
this information to the hardware implementation effort
produced immediate and gratifying results by enabling the
serial I/O and a fully functional ANSI BASIC on a 25-year-
old hardware platform.

Now that Super BASIC was available again and a
significant amount of software for the 1802 was obtainable
from the distributed tape archives around the world, it was
time to focus on an effective development environment for
modifying existing software and developing new
components for the 1802.

A normal situation in the early days of hobby computing
was that each system tended to be somewhat unique in the
details of hardware implementation. This was, and still is,
true of 1802-based systems. Most software included
complete code listing and procedures for customizing it to a
user’s hardware environment. This level of documentation
is not (yet) available for Super BASIC, but is within reach
for several variations of the reduced-function Tiny BASIC.
In order to improve the transportability of Tiny BASIC
across these platforms it was necessary to translate the code
listing on paper into an electronic form compatible with
some form of assembler.

Much of the 1802 software was developed using an RCA
assembler and the majority of the available listings show
instruction mnemonics and assembler directives in RCA
format. To date, no one in the 1802 / COSMAC Elf Users
Group has been able to locate a copy of this assembler. It
became apparent that the best approach for reestablishing
the 1802 development environment would be through the
use of a PC-based cross-assembler. This approach would
also provide for easy distribution and archiving of all
resultant software. It would also allow the assembled code
to be exported to hardware in .WAV file format via the
“ELF Tools” utility. But seeking a PC-based cross-
assembler for a 25-year-old processor seemed a bit
anachronistic.

Again, online resources among the retro-computing world
proved to be the solution. For unknown reasons, members
of this clan have been archiving shareware products for
nearly every microprocessor through the Eighties. One
product in the collection, PseudoSam A18 was a full-
featured DOS compatible cross-assembler for the entire
family of CDP-180X processors, and freely distributable
under the terms of the shareware license included in the
package8. All that was left was to convert the paper listing
from Tiny BASIC into a text file and translate the directives
from RCA format to PseudoSam format.

While there are numerous methods applicable to this part of
the task, kismet provided an elegant solution. Sometime in
the early Eighties, the author of Tiny BASIC allowed a
third party to include the core code as part of a development
effort for another commercial product. That company
subsequently ceased operations, but one principal, the key
software developer retained an electronic copy of the entire
code library9. Moreover, he also had a release for use of the
Tiny BASIC code and was willing to pass on the same
courtesy for his version of the code. By clipping the entire
Tiny BASIC code from this “open source” version and
comparing it to the paper listing of the original Tiny
BASIC, it was possible to back out the changes and return
to the original functionality of Tiny. All that was left was
to alter the assembly directives and mnemonics to produce
error-free code, and to verify the resulting binary file.

Ground System Planning for Long Duration Space Missions
Helped by Lessons Learned Resurrecting Obsolete Computers

Copyright 2003 The Johns Hopkins University Applied Physics Laboratory. All Rights Reserved.

The net result of the entire effort was the complete recovery
of several 1802-based operating systems, higher-level
languages, and the establishment of a team of capable
experts for this 25-year-old, pioneering microprocessor.
The effort and challenges involved in this recovery should
provide insight into the scope and significance of effective
archiving along with the importance of refreshing media for
electronic data storage. It is not likely that the 1802
recovery effort provides any technological advancement or
other benefit beyond these lessons, and the indulgence of
nostalgia.

The HP 2000

The HP 2000 systems, introduced in the late 1960s and
marketed through the late 1970s, were popular among
educational institutions for their ease of use and often
provided these institutions the first example of interactive
computing. As a result, many tens of thousands of students
are believed to have written their first programs on an HP
2000. These systems also helped transition HP into the data
processing market, paving the way for the success of the
HP 3000.

The HP 2000 family of minicomputers all used a Time
Share Basic (TSB) operating system based on Prepare
Timeshare Basic10. These systems used one or two
processors from the HP 1000 family, which were intended
for real-time computing and instrument control
applications.11

A system was often configured for 16 or 32 concurrently
connected users, and often used a bank of modems for
remote access. Connection speeds of 110, 300, and later
1200 baud were common for dial-up users, and directly
connected video terminal users could enjoy 2400 baud.

With only limited availability of actual hardware for the HP
processors and the questionable condition of that equipment
in the year 200X, it became clear that the HP 2000 could
most practicably be brought back as a simulation.

The simulator used, SIMH12, was originally a simulator for
early DEC processors. The design philosophy of the
simulator was to be flexible, and had already been modified
to emulate several HP 1000 CPU types and peripherals13.

HP had long discontinued the software and documentation,
and several attempts by various people to engage an HP
archivist to search for information were unsuccessful.
Instead, various archives of private collectors were used to
assemble the necessary binaries, sources, listings, and
documents.

In the case of one key piece of software, which existed only
as a paper tape, no paper tape reader was readily available
to recover the software. The ten feet of paper tape was
transcribed by hand and keyed into a modern computer with

a hex editor, using a double-blind approach for error
correction.

The most commonly used, and therefore desirable version
of the 2000 would be "Access", as this version was the most
full-featured and most installations were eventually
upgraded to Access. Consequently, most of the archived
user-contributed program libraries are from Access
systems. But Access requires dual CPUs interconnected by
a channel-like interface called an interconnect kit. One of
the processors, the I/O processor (IOP), would also require
simulation of special micro-coded instructions14.

The descriptions of the IOP micro-coded instructions were
eventually found in an Operating System (OS) internal
document, which was not widely published15. But analysis
of OS binary tapes for different processor types revealed
that the micro-coded instructions were different between
2100 processors and 21MX processors, and that the
documentation was only applicable to the 2100 processor.

The 9-track magnetic source tape for the operating system
had been safely stored over a decade ago by one of the
authors, a fortuitous situation. Through connections within
the online retro-computing groups, an expert in recovery of
data from aged magnetic tapes was found in a nearby city.
The tape was read and converted to a modern format. The
tape image was then provided to another team member to
extract the individual files, since it was an image of a tape
that was an image of a system directory that contained files
that were images of the source files.

The set of source files was found to be only applicable to
the 21MX version. To resolve this, an actual set of 21MX
Access micro-code PROMs were read and analyzed. With
the differences between the two understood, work could
proceed with simulating these instructions and we will
eventually be able to reconstruct the source for the 2100
version.16

Having a simulation of both the main processor and the I/O
processor, the project team now needed to connect the two
virtual machines together.

The interconnect kit posed its own set of challenges. Since
the SIMH simulator is portable between Windows, Mac,
and Unix hosts, a socket approach was chosen to simulate
the interconnection between two instances of the simulator,
one functioning as the IOP, and the other functioning as the
main processor. The alternative would be to have one
instance of a simulator capable of simulating both CPUs,
using shared memory for the interconnect kit.

Another problem was caused by a deficiency in the
documentation for the interconnect kit.17 The sections on
Programming and Theory of Operation both clearly implied
that each half of the channel was simplex, and that the two
combined constituted a single full-duplex channel.

Ground System Planning for Long Duration Space Missions
Helped by Lessons Learned Resurrecting Obsolete Computers

Copyright 2003 The Johns Hopkins University Applied Physics Laboratory. All Rights Reserved.

However, one team member recalled from decades-old
experience with actual hardware that there was something
more to it then was documented. Through careful
examination of cable drawings and interface card
schematics he was able to convince himself that each
channel side was in fact a half-duplex link. However he
was unable to convince the simulator developer of the
importance of this.

After the initial implementation of the socket-based
interconnect simulation was tested, it was shown that not
only did the capability exist to send data in a reverse
direction on a channel side but also that the operating
system was taking advantage of this additional capability.

The hardware documentation makes no note of this
additional capability, but the software engineers using the
interface seem to have been well aware of it. While each
side of the interface is generally used in apposing "forward"
directions, information can be and is passed backward on a
channel side.

Clearly, the capability was known to both design teams
decades ago. The lack of proper documentation of this
capability demonstrates a hole in the documentation regime
applied by a major manufacturer—the need to document
excess capability above that necessary to meet the
requirements.

While the quest to simulate Access continues, attention was
focused on the "E" version of the 2000 family.

The “E” version was a step backward in the HP 2000 line.
It seems that HP wanted to move the price for entry-level
systems from the $100k range to the $50k range.18 This
reduction in price was accomplished by going back to a
single processor configuration. Because of memory
constraints in a single processor, the product was short on
features and was not popular.

The established contacts made locating the binaries and
documentation a fairly simple task. The scripts and test
environment from the Access tests were simplified and
reconfigured for “E”. It was found that the versions of
available binaries, sources, and documentation all bore
different date codes and did not directly relate to each other.
The I/O device addresses expected by the available binaries
were deduced by disassembling sections of code, since they
clearly were different from the available documentation.19

A troubling lesson learned working with this operating
system was that the disk drive had to be imparted with
unrealistic speed in order to successfully generate and boot
the system. A similar problem and work-around had been
seen much earlier between the Access loader and the tape
drive simulation. It should be noted that these device
simulations were written based on the documentation and
tested using the original HP diagnostics. But clearly they

are not yet a faithful simulation of the original equipment.
We suspect that the software may be asking the devices to
perform operations outside of the normal documented
sequence, or are using features that were poorly
documented. For example, what would a real tape drive do
if a program were to command it to rewind, while it was
already rewinding? Or how should a disk drive respond if
it were commanded to seek while it was busy searching a
track?

With the “E” version, operational attention was again
focused on Access. Closer examination of the data flowing
over the interconnection between the two processors
revealed that changes in timing affected what the two
processors were saying to each other. The documentation
allowed us to interpret what was being said, but did not
provide an overall example of what a conversation should
look like. With some guessing about what seemed
reasonable in this conversation, and adjusting of timers, we
were able to boot the system, but not log in. The best we
could do was to get the “Please Log In” prompt to the user
terminal, but we could not communicate the log in attempt
from the IOP to the main processor. In addition, we would
also see the IOP informing the main processor that users
had “hung up” on ports that we were not using.

At this point, we have indications of possible problems in
the modem control logic, questions about the interconnect
implementation, and special micro-coded IOP instructions
which have never been proven beyond passing the
diagnostics. With this number of variables involved we
were forced to consider the possibility of reassembling a
system form real components and constructing a device,
which would allow us to capture the conversations between
to IOP and main processor. As an alternative, we decided
to explore the “F” version of the operating system.

The HP 2000 TSB Version “F” was a dual processor
system, which was the direct predecessor to Access. “F”
did not use any special instructions in the I/O processor.20
The sources for “F” have not yet been located, but the
binaries and documentation were located with little
difficulty. The operational procedures were reverse
engineered and reconstructed to integrate with the simulator
environment. Again, the Access simulation environment
was used as a template, and the best timer settings for the
tape drive, disk drive, and processor interconnect kit were
used.

The “F” version became operational with much less effort
than anticipated, however without the source for “F” much
less was learned than had been hoped. This leaves us again
in a position of having to consider restoring a system from
original parts to resolve our outstanding questions.

It should be noted that our goal is to simulate every version
of the operating system, throughout its eight or nine year

Ground System Planning for Long Duration Space Missions
Helped by Lessons Learned Resurrecting Obsolete Computers

Copyright 2003 The Johns Hopkins University Applied Physics Laboratory. All Rights Reserved.

development cycle. Unlike many space ground systems, it
is not our goal to prove under simulation that a program or
sequence of commands, such as the operating system itself,
will have the desired effect when applied to original
hardware. If this were our goal, we would have to first
prove that the simulator will respond in the exact same way
as the original systems given every possible erroneous
condition, a certainly impossible task.

However, since it is our goal to demonstrate the
functionality of known working operating systems, we
should eventuality be able to establish, with reasonable
confidence, that user programs running under these
operating systems would behave in the same manner under
simulation as they would in a real environment.

This layer of insulation should not be overlooked when
anticipating what can be, and what cannot be, expected
under simulation.

Conclusion

In the words of George Santayana, “Those who do not learn
from history are doomed to repeat it.”

Clearly there is significance to the lessons learned from
these two efforts that can be applied in a preparatory
manner for long duration missions. Key among these is the
need to archive information in redundant and technology
independent formats (analog paper or microfilm/fiche).
Another significant lesson involves the degradation of
media and its effect on data availability. This may seem
irrelevant in an era of optical storage devices, but recent
discussions have revealed that even CD ROMs are not
immune to a form of bit erosion after several years. Still to
be considered is the dependency of software upon a
hardware environment. Without persevering the hardware
in an operational state, software cannot be expected to
operate unless it can be ported to another platform or placed
into a simulated environment of sufficient fidelity.

Machine-readable information is dependent upon a
compatible machine to permit its reading. In congruence
with this axiom, and given the predictable and increasingly
accelerating obsolescence of information technology
machinery, the National Archives and Records
Administration (NARA) prescribes specific policy for the
preservation of federal and public electronic records.
Preservation requirements entail timely and periodic
alterations to the digital format of the records, including
rewriting stored data to new physical media, and maybe
changing the way the records are digitally encoded from an
obsolescent to a persistent format21. Digitally encoded
operating systems and software to drive data processing
hardware are just as much an electronic record as the data
content produced and manipulated by the systems, and are
therefore subject to the same preservation policy.

The area of documentation yielded another unanticipated
lesson. How is it possible that software and hardware
engineers hit upon an undocumented method of using a
hardware interface yet allowed it to remain totally
undocumented across an entire product line? The effect of
this one discovered omission is still being felt and has
impeded the restoration of Access on the HP 2000.
Obtaining operational hardware to complete the reverse
engineering of this interface may be necessary to resolve
these remaining issues. Clearly one solution to avoid future
occurrences of this type of omission is to require that
subsystem designers document “capability”. The designers
must step back from familiar perspective of “how this
component will be used” and document the capability of the
subsystem from the perspective of “how this component
can be used”. The generation of a capabilities document
seems a reasonable method for capturing this information.

There are many other lessons related to the archiving of
hardware, software, documentation and other areas that
might become obvious to readers as they relate these
situations to their own efforts and experiences.

The lessons learned from these two efforts are having
significant impact on the longevity planning efforts for the
New Horizons mission to Pluto22.

The New Horizons ground system, including the
observatory simulator, is required to support operations that
could continue for more than two decades after launch.
Planning for the preservation of key components, custom
software & hardware, and the preservation of the operating
environment within which these systems are designed to
function represent a significant effort. The cost of this
effort in the early stages of the program is expected to result
in significant cost savings in later years. Quantifying these
savings is not possible during the early years, however—
quantifying the cost of recurring software development
throughout the mission could be.

Without planning to preserve the hardware environment
needed by the software, systems would fail and eventually
be replaced by more modern systems. These new systems
would provide enhanced performance by virtue of their
newer operating systems, but the new OS is not guaranteed
to provide functionality identical to the old OS, thereby
necessitating a software rewrite to maintain operational
capability. This situation will cascade, as every workstation
must then be upgraded to maintain compatibility in a large
ground system environment. Even worse, this cycle can be
expected to repeat every 5 years or so. Clearly this
situation shows the potential cost associated with the
absence of longevity planning.

The New Horizons mission is being designed at the Johns
Hopkins University Applied Physics Laboratory in Laurel,
Maryland. New Horizons is planned to launch in January

Ground System Planning for Long Duration Space Missions
Helped by Lessons Learned Resurrecting Obsolete Computers

Copyright 2003 The Johns Hopkins University Applied Physics Laboratory. All Rights Reserved.

of 2006, with encounter planned for the 2015–2016
timeframe. Longevity planning for this mission has
become a significant issue during several recent program
reviews.

Acknowledgments

The Authors of this paper wish to acknowledge the efforts
of, and the inspirations from members of the retro-
computing world;

Bob Supnik, and the SIMH group for their work leading
to the HP 2000 simulation.

Dave Conroy, Bill McDermith, Jeff Moffatt, and Terry
Newton for their contributions to the HP 2100 simulator.

Bob Supnik, Al Kossow, Tim Shoppa, and Eric Smith,
for their contribution to the HP 2000 project.

We also wish to acknowledge the contributions of Dave
Ruske, Bill Rowe, Nelson Grodzicki, Richard Dienstknecht,
Lee Hart, and the COSMACELF group for their individual
and combined efforts resurrecting 1802 software.

Contributing editor: McDonald R. Stewart, Doctoral
Candidate in the Management of Science, Technology and
Innovation, The George Washington University School of
Business and Public Management.

References

1 RCA Integrated Circuits Data book 4-76 pg, 692.
2 The Microprocessor Based MAGSAT Command System,
Ark L. Lew JHU/APL CP-077 February 1980
3 Build the COSMAC “ELF” Part 1, Popular Electronics
August 1976 Pgs 33-38
4 SUPER ELF An 1802 based Micro Computer, Quest
Electronics, 1977
5 COSMAC ELF Users Group
http://groups.yahoo.com/groups/cosmacelf
6 QUESTDATA Newsletter Archive
http://groups.msn.com/
RCACDP1802CosmacComputers/newsletters.msnw/
7 http://groups.yahoo.com/groups/files/ElfTools.zip
8 http://huizen.dds.nl/~gnupic/assemblers_pseudosam.html
9 Lee A. Hart, Technical Micro Systems, Inc.
10 PREPARE TIME-SHARE BASIC
http://oscar.taurus.com/~jeff/2100/hpbasic/index.html

11 “25 Years of Real-Time Computing”
http://www.interex.org/tech/csl/RTE/archive/poyner1.htm
12 The Computer History Simulation Project
http://simh.trailing-edge.com/
13 HP 2100 Simulator Configuration
http://simh.trailing-edge.com/hp2100.html
14 HP 2000 Access Operator’s Manual,
HP Part No. 22687-90005
15 HP 2000 Computer System Sources and Listings
Documentation, HP Part No. 22687-90020
16 HP’s IOP Implementations: 2100 vs 21MX Bob Supnik,
22-Nov-2002, http://simh.trailing-edge.com/docs/hpiop.pdf
17 Operating and Service Manual, Processor Interconnect
Kit, Sept. 1973 HP Part No. 12875-90015
18 Systems Analyst’s Seminar guide, Introduction to the
2000E, Al Pare, August, 1972
19 2000E Time-shared Basic System Operator’s Guide
August 1972, HP Part No. 02000-90049
20 HP 20854A Timeshared Basic/2000, Level F, System
Operator’s Manual, Nov. 74, HP Part No. 02000-90074
21 Electronic Records Archives Requirements Document
(RD), Section 2.7.2 – Preservation
http://www.archives.gov/electronic_records_archives/about
_era/requirements.html
22Gemeny, S. E., “Longevity Planning, A Cost Reduction
Strategy for Ground Systems of Long Duration Space
Missions”, 5th International Symposium on Reducing the
Cost of Spacecraft Ground Systems and Operations
(RCSGSO) 2003

